RISK MANAGEMENT IN GNSS MALFUNCTIONING UNIDROIT, Rome, Italy, 11 November, 2011

INTERNATIONAL INSTITUTE FOR THE UNIFICATION OF PRIVATE LAW INSTITUT INTERNATIONAL POUR L'UNIFICATION DU DROIT PRIVE

GNSS: WHAT CAN GO WRONG AND WHAT ARE THE RISKS?

RENATO FILJAR

Member, Council, The Royal Institute of Navigation, London, UK

R Filjar GNSS: What can go wrong and what are the risks?

Content of presentation

- Introducing GNSS
- GNSS vulnerabilities and risks

- Mitigation GNSS vulnerabilities and risks
- Conclusion

- We all are navigators
- Timing, orientation, positioning and navigation are deeply embedded in our lives

GNSS: What can go wrong and what are the risks?

Business environment for GNSS

GNSS: What can go wrong and what are the risks?

• End-user's perspective of GNSS

- End-user does not understand and care for the technology and its vulnerabilities
- End-user assumes absolute GNSS robustness and limitless performance
- Urban legends prevail

- How GNSS works?
- Propagation time measurement-based
- Time synchronisation and common reference framework (WGS84) are essential
- Four non-linear equations of four un-knows yield: 3D position, time

- <u>GNSS architecture</u>
- Space (satellite) segment (GPS: 31, Glonass: 23)
- Ground (control) segment
- User segment
- Propagation media
- Advanced systems: DGNSS, A-GNSS, SBAS (EGNOS) (incl.)

GNSS: What can go wrong and what are the risks?

GNSS vulnerabilities and risks

GNSS: What can go wrong and what are the risks?

- <u>Reduced service availability</u> GNSS vulnerabilities and risks related to utilisation and environment for satellite positioning
- Natural cuases
- Artificial causes

Source: c2h2.ifa.hawaii.edu

Source: Wikimedia

GNSS: What can go wrong and what are the risks?

Space weather and ionospheric disturbances

Source: Lucent Technologies

- Artifical causes of reduced GNSS service availability
- Deliberate or unintentional intereference:
 - Jamming
 - Re-broadcasting (*meaconing*)
 - Spoofing
 - EMC issues

- <u>Mitigation GNSS</u>
 <u>vulnerabilities and</u>
 <u>risks</u>
- Growing reliance on GNSS
- Awareness and impact assessment
- Policy response
- Increasing resiliance

- <u>Conclusions</u>
- Satellite navigation technology matured to the level where numerous technology, economic and safety systems comprise it.
- Satellite navigation becomes a component of national infrastructure.
- Technological, business and legal issues are to be resolved in order to allow for continuous sustainable market growth.

GNSS: What can go wrong and what are the risks?

Reference

- RIN GNSS Vulnerabilities and Solutions Conference, Baska, Krk Island, Croatia (http://bit.ly/t1E41m)
- John A Volpe National Transportation Systems Center. (2001). Vulnerability Assessment of the Transportation Infrastructure Relying on the Global Postioning System. Cambridge, MA. Available at: http://1.usa.gov/hPw6wr
- Thomas, M et al. (2011). Global Navigation Space Systems: reliance and vulnerabilities. The Royal Academy of Engineering.London, UK. Available at: http://bit.ly/feFB2i
- Hapgood, M. (2010). Space weather: Its impact on Earth and implications for business.Lloyd's 360° Risk Insight. London, UK. Available at: http://bit.ly/uUnD0K
- American Meteorological Society. (2011). Understanding Vulnerability & Building Resilience. AMS. Washington, DC. Available at: http://bit.ly/rnkRQu
- Filjar, R, S Kos, R Mohovic. (2010). Global Navigation Satellite System as a component of national infrastructure. UN/Moldova/US Workshop on GNSS Applications. Chisinau, Moldova. Available at: http://bit.ly/vyl8gQ
- Filjar, R. (2008). A Study of Direct Severe Space Weather Effects on GPS Ionospheric Delay. *J of Navigation*, **61**(1), 115-128. Cambridge University Press. Cambridge, UK.

THANK YOU FOR YOU ATTENTION!

-17

Dr Renato Filjar, FRIN MIET

Satellite navigation and space weather specialist, Assist Prof, Faculty of Maritime Studies, and Faculty of Engineering, University of Rijeka, Croatia, Member, Council, The Royal Institute of Navigation, London, UK

E-mail: renato.filjar@gmail.com

- APPENDIX: Vulnerabilities by GNSS segments
- Ground and satellite segment
- User segment
- Propagation media segment

- Ground and satellite segment
- Too few satellites
- Incorrect navigation data
- Jump or drift of satellite clock
- Distorted signal waveform
- Service interuption or satellite loss due to space weather effects
- Attack on ground/space segment
- Augmentation and assisting systems

- <u>User segment</u>
- Leap seconds and roll-overs
- System up-grades
- Receiver software bugs
- Multipath

- Propagation media segment
- Slow variation in ionospheric TEC
- Fast variation in ionospheric TEC
- Ionospheric scintillation
- Local patterns of ionospheric dynamics
- Space weather storms
- Deliberate modification of the ionosphere