RISK MANAGEMENT IN GNSS MALFUNCTIONING
UNIDROIT, Rome, Italy, 11 November, 2011

GNSS: WHAT CAN GO WRONG AND WHAT ARE THE RISKS?

RENATO FILJAR
Member, Council, The Royal Institute of Navigation, London, UK
R Filjar
GNSS: What can go wrong and what are the risks?

• Content of presentation
 • Introducing GNSS
 • GNSS vulnerabilities and risks
 • Mitigation GNSS vulnerabilities and risks
• Conclusion
R Filjar

GNSS: What can go wrong and what are the risks?

• **We all are navigators**

• Timing, orientation, positioning and navigation are deeply embedded in our lives
R Filjar

GNSS: What can go wrong and what are the risks?

- Business environment for GNSS
R Filjar
GNSS: What can go wrong and what are the risks?

• End-user's perspective of GNSS
 • End-user does not understand and care for the technology and its vulnerabilities
 • End-user assumes absolute GNSS robustness and limitless performance
 • Urban legends prevail
R Filjar

GNSS: What can go wrong and what are the risks?

• How GNSS works?
• Propagation time measurement-based
• Time synchronisation and common reference framework (WGS84) are essential
• Four non-linear equations of four un-knows yield: 3D position, time
GNSS: What can go wrong and what are the risks?

- GNSS architecture
- Space (satellite) segment (GPS: 31, Glonass: 23)
- Ground (control) segment
- User segment
- Propagation media
- Advanced systems: DGNSS, A-GNSS, SBAS (EGNOS)
R Filjar

GNSS: What can go wrong and what are the risks?

- GNSS vulnerabilities and risks

Sources of GNSS Vulnerabilities

Positioning Errors
- Dilution of Precision
 - satellite ephemeris
 - satellite clock
- User Equivalent Ranging Error
 - multipath
 - receiver noise
 - ionospheric delay
 - tropospheric delay

Reduced Service Availability
- Natural Causes
 - geomagnetic storms
 - ionospheric storms
 - volcanic eruptions
 - earthquakes
- Artificial Causes
 - intentional (jamming)
 - non-intentional (non-EMC)
R Filjar

GNSS: What can go wrong and what are the risks?

- **Reduced service availability** - GNSS vulnerabilities and risks related to utilisation and environment for satellite positioning

- Natural causes

- Artificial causes

Source: c2h2.ifa.hawaii.edu

Source: Wikimedia
R Filjar

GNSS: What can go wrong and what are the risks?

- Space weather and ionospheric disturbances

Source: Lucent Technologies
GNSS: What can go wrong and what are the risks?

- Artificial causes of reduced GNSS service availability
- Deliberate or unintentional interference:
 - Jamming
 - Re-broadcasting (*meaconing*)
 - Spoofing
 - EMC issues
R Filjar

GNSS: What can go wrong and what are the risks?

- Mitigation GNSS vulnerabilities and risks
- Growing reliance on GNSS
- Awareness and impact assessment
- Policy response
- Increasing resilience
Conclusions

Satellite navigation technology matured to the level where numerous technology, economic and safety systems comprise it.

Satellite navigation becomes a component of national infrastructure.

Technological, business and legal issues are to be resolved in order to allow for continuous sustainable market growth.
R Filjar

GNSS: What can go wrong and what are the risks?

• Reference

• RIN GNSS Vulnerabilities and Solutions Conference, Baska, Krk Island, Croatia (http://bit.ly/t1E41m)

THANK YOU FOR YOUR ATTENTION!

Dr Renato Filjar, FRIN MIET

Satellite navigation and space weather specialist,
Assist Prof, Faculty of Maritime Studies, and Faculty of Engineering,
University of Rijeka, Croatia,
Member, Council, The Royal Institute of Navigation, London, UK

E-mail: renato.filjar@gmail.com
R Filjar
GNSS: What can go wrong and what are the risks?

- **APPENDIX: Vulnerabilities by GNSS segments**
- Ground and satellite segment
- User segment
- Propagation media segment
GNSS: What can go wrong and what are the risks?

- Ground and satellite segment
- Too few satellites
- Incorrect navigation data
- Jump or drift of satellite clock
- Distorted signal waveform
- Service interruption or satellite loss due to space weather effects
- Attack on ground/space segment
- Augmentation and assisting systems
R Filjar

GNSS: What can go wrong and what are the risks?

- User segment
- Leap seconds and roll-overs
- System up-grades
- Receiver software bugs
- Multipath
R Filjar

GNSS: What can go wrong and what are the risks?

- Propagation media segment
- Slow variation in ionospheric TEC
- Fast variation in ionospheric TEC
- Ionospheric scintillation
- Local patterns of ionospheric dynamics
- Space weather storms
- Deliberate modification of the ionosphere